A Limit Problem
A Discord user wondered how to solve the following problem: determine $$ \lim_{n\rightarrow\infty}\sqrt[n]{10^n+9^n+8^n}. $$
Solution.
Observe that $$\sqrt[n]{10^n + 9^n + 8^n} = 10\sqrt[n]{1 + \left(\frac{9}{10}\right)^n + \left(\frac{8}{10}\right)^n}
$$
For convenience, let \(a=9/10\) and \(b=8/10\). Now we have
$$
\begin{equation}
\begin{split}
\lim_{n\rightarrow\infty}\sqrt[n]{10^n+9^n+8^n} &= 10\lim_{n\rightarrow\infty}\sqrt[n]{1 + a^n + b^n} \\
&= 10\lim_{n\rightarrow\infty}\exp\log(1+a^n+b^n)^{1/n} \\
&= 10\exp\lim_{n\rightarrow\infty}\frac{1}{n}\log(1+a^n+b^n)
\end{split}
\end{equation}
$$
Since \(a<1\) and \(b<1\) we have \(a^n \rightarrow 0\) and \(b^n\rightarrow 0\) as \(n\rightarrow\infty\).
Now we utilize the small log approximation \(\log(1+x)\approx x\) for sufficiently small \(x\). (This can be justified by Taylor expanding \(\log(1+x)\) around \(0\).)
\begin{equation}
\begin{split}
10\exp\lim_{n\rightarrow\infty}\frac{1}{n}\log(1+a^n+b^n) &= 10\exp\lim_{n\rightarrow\infty}\frac{a^n+b^n}{n} \\
&= 10\exp(0) \\
&= 10
\end{split}
\end{equation}
\(\square\)